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Abstract

In regression models, appropriate bootstrap methods for inference robust to het-

eroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The

finite sample performance of a heteroskedastic-robust test is investigated with Monte

Carlo experiments. The simulation results suggest that one specific version of the wild

bootstrap outperforms the other versions of the wild bootstrap and of the pairs boot-

strap. It is the only one for which the bootstrap test gives always better results than

the asymptotic test.
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1 Introduction

Let us consider the linear heteroskedastic model

yt = Xtβ + ut, E(ut|Xt) = 0, E(u2
t |Xt) = σ2

t , (1)

where yt is a dependent variable, Xt an exogenous k-vector, β and σ2
t are the unknown param-

eters and unknown variances of the error term, respectively, and u is error term. Inference
on the parameters requires special precautions when the error terms ut are heteroskedastic.
Then, the OLS estimator of the covariances of the estimates of β̂ are in general biased and
inconsistent, and so conventional tests are not t and F distributions, even asymptotically.

This problem is solved in Eicker (1963) and White (1980), where a Heteroskedasticity
Consistent Covariance Matrix Estimator, or HCCME, is proposed that permits asymptoti-
cally correct inference on β in the presence of heteroskedasticity of unknown form:

(X⊤X)−1X⊤Ω̂X(X⊤X)−1, (2)

where the n× n diagonal matrix Ω̂ has elements a2
t û

2
t , where ût is the OLS residual. MacK-

innon and White (1985) considers a number of possible forms of HCCME and shows that,
in finite samples, they too, can be seriously biased, as also t or F statistics based on them,
especially in the presence of observations with high leverage; see also Chesher and Jewitt
(1987), who show that the extent of the bias is related to the structure of the regressors. We
refer to the basic version of the HCCME, proposed in Eicker (1963) and White (1980) as
HC0 (at = 1) and to the other forms considered by MacKinnon and White (1985) as HC1,
HC2 and HC3. Specifically,

HC1 : at =

√
n

n − k
, HC2 : at =

1√
1 − ht

, HC3 : at =
1

1 − ht

, (3)

where ht ≡ Xt(X
⊤X)−1X⊤

t is the tth element of the orthogonal projection matrix on to the
span of the columns of X. MacKinnon and White (1985) and Chesher and Jewitt (1987)
show that, in terms of error in the rejection probability (ERP), HC0 is outperformed by HC1,
which is in turn outperformed by HC2 and HC3. The last two cannot generally be ranked,
although HC3 has been shown in a number of Monte Carlo experiments to be superior in
typical cases. However, even if HC2 and HC3 perform better in finite samples, ERP is still
significant if the sample size is not large. Then, it makes sense to consider whether bootstrap
methods might be used to alleviate their size distortion.

Bootstrap methods normally rely on simulation to approximate the finite-sample dis-
tribution of test statistics under the null hypotheses they test. For such methods to be
reasonably accurate, it is desirable that the data-generating process (DGP) used for drawing
bootstrap samples be as close as possible to the DGP that generated the observed data,
assuming that that DGP satisfies the null hypothesis. This presents a problem if the null
hypothesis admits heteroskedasticity of unknown form: If the form is unknown, it cannot be
imitated in the bootstrap DGP.

A technique used to overcome this difficulty is the so-called wild bootstrap, developed
in Liu (1988) following suggestions in Wu (1986) and Beran (1986). Liu establishes the
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ability of the wild bootstrap to provide refinements for the linear regression model with
heteroskedastic errors. Further evidence is provided in Mammen (1993). Both Liu and
Mammen show, under a variety of regularity conditions, that the wild bootstrap is asymp-
totically justified, in the sense that the asymptotic distribution of various statistics is the
same as the asymptotic distribution of their wild bootstrap counterparts. They also show
that, in some circumstances, asymptotic refinements are available that lead to agreement
higher than leading order between the asymptotic distributions of the raw and bootstrap
statistics. Recently, Davidson and Flachaire (2001) proposes a procedure with better finite-
sample performance than the version usually recommended in the literature and give exact
results for some specific cases. Experimental results in Godfrey and Orme (2001) indicate
that tests should be implemented using this procedure.

Another very popular technique that has been used to overcome the problem of het-
eroskedasticity of unknown form is the so-called pairs bootstrap, or bootstrap by pairs,
proposed in Freedman (1981). In its original form, the pairs bootstrap is implemented by
randomly resampling the data directly with replacement. Monte Carlo evidence suggests
that inference based on this procedure is not always accurate, [Horowitz (2000)]. However,
an improved version of the pairs bootstrap is proposed in Mammen (1993), and subsequently
modified in Flachaire (1999), in which a resampling scheme is defined that respects the null
hypothesis and simulation results show that its performance is highly improved but the size
distortion is still significant.

The important question of whether the error in the rejection probability of a test based
on the HCCME is smaller with the wild bootstrap than with the pairs bootstrap has been
studied in a few experiments, in MacKinnon (2002) Brownstone and Valletta (2001) and
Horowitz (2000). Here, we provide additional evidence for this question and for power
comparisons through Monte Carlo experiments with different versions of the pairs bootstrap
and of the wild bootstrap.

In section 2, I present the wild bootstrap and the pairs bootstraps. The model design is
described in section 3, and simulation results are presented in section 4. Section 5 concludes.

2 Bootstrap methods

Numerical results show that hypothesis tests based on asymptotic HCCME can be seriously
misleading whith small samples, see for instance MacKinnon and White (1985), Davidson and
Flachaire (2001) and Godfrey and Orme (2001). It then makes sense to consider bootstrap
methods to improve reliability of such tests.

In regression models, the principle of the bootstrap can be expressed as follows:

To compute a test, the bootstrap principle is to construct a data-generating process,
called the bootstrap DGP, based on estimates of the unknown parameters and prob-
ability distribution. The distribution of the test statistic under this artificial DGP
is called the bootstrap distribution. A P -value bootstrap can be calculated using the
bootstrap distribution as the nominal distribution.
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It is often impossible to calculate the bootstrap distribution analytically: we approximate it
through simulations (bootstrap resampling). It is clear that, if the bootstrap DGP is close
to the true DGP, the bootstrap distribution should be close to the true distribution.

Theoretical developments show that under some regularity conditions, the bootstrap er-
ror of the rejection probability, or bootstrap ERP, converges more quickly to zero than the
asymptotic ERP. For fixed sample size n, the convergence rate of the ERP of a test statistic
based on its asymptotic distribution is in general of order n−1. Beran (1988) shows that
bootstrap inference is refined with order n−1/2 when the quantity bootstrapped is asymptot-
ically pivotal and when the parameters and distribution estimates in the bootstrap DGP are
consistent. Davidson and MacKinnon (1999) shows that a further refinement, in general of
order n−1/2, can be obtained if the bootstrapped test statistic and the DGP bootstrap are
asymptotically independent. These two successive refinements, of order n−1, give a bootstrap
ERP faster convergence than an asymptotic ERP.

Let us consider the linear regression model

yt = x1tβ + X2tγ + ut, (4)

in which the explanatory variables are assumed to be strictly exogenous, in the sense that, for
all t, x1t and X2t are independent of all of the error terms us, s = 1, . . . , n: E(ut|x1, X2) = 0.
The row vector X2t contains observations on k − 1 variables, of which, if k > 1, one is a
constant. We test the null hypothesis that the coefficient β of the first regressor x1t is equal
to β0, with a t test statistic,

τ =
β̂ − β0√
V̂ar(β̂)

(5)

where β̂ is the OLS parameter estimate of β and V̂ar(β̂) is the heteroskedasticity consistent
variance estimate of β̂. We can compute an asymptotic test, using the asymptotic χ2 distri-
bution to compute a P value, or a bootstrap test, using a bootstrap distribution to compute a
P value. Many different bootstrap tests can be computed with different bootstrap methods.

Pairs bootstrap

The bootstrap by pairs, proposed in Freedman (1981), consists in resampling the regressand
and regressors together from the original data: a bootstrap sample (y⋆, x⋆

1, X
⋆
2 ) is obtained

by drawing raws independently with replacement from the matrix (y, x1, X2). It is clear that
the bootstrap sample does not come from a parametric model respecting the null hypothesis.
Thus, we need to modify the test statistic to be compatible with the data, see Hall (1992).
The distribution of the modified test statistic,

τ =
β̂⋆ − β̂√
V̂ar(β̂⋆)

(6)

is the pairs bootstrap distribution, where β̂⋆ is the OLS estimate from a bootstrap sample.
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Flachaire (1999) proposes modifying the resampling scheme so that the null hypothesis is
respected in the bootstrap DGP. The principle is to consider the following bootstrap DGP:

y⋆
t = x⋆

1t β0 + X⋆
2tγ̃ + u⋆

t (7)

where γ̃ is the OLS restricted parameter estimate, and (x⋆
1t, X

⋆
2t, u

⋆
t ) is a k + 1 vector drawn

from the matrix (x1, X2, aû), where aû is a vector with typical element asûs, ûs is an OLS
unrestricted residual and as can take the forms HC0, HC1, HC2 or HC3. Then, a bootstrap
sample (y⋆, x⋆

1, X
⋆
2 ) is calculated based on the bootstrap DGP (7). It is clear that this last

bootstrap DGP respects the null. Then, the distribution of the test statistic

τ =
β̂⋆ − β0√
V̂ar(β̂⋆)

(8)

is the pairs bootstrap distribution, where β̂⋆ is the OLS estimate from a bootstrap sample.

Wild bootstrap

The wild bootstrap is developed in Liu (1988) following suggestions in Wu (1986) and Beran
(1986). To generate a bootstrap sample, we use the following bootstrap DGP:

y⋆
t = x1t β0 + X2tγ̃ + atũt ε

⋆
t , (9)

where ũt is the OLS restricted residual and ε⋆
t is white noise following a distribution, F , with

expectation E(ε⋆
t ) = 0 and variance E(ε⋆2

t ) = 1. The distribution of the test statistic

τ =
β̂⋆ − β0√
V̂ar(β̂⋆)

(10)

is the wild bootstrap distribution, where β̂⋆ is the OLS estimate from a bootstrap sample.
In the literature, the further condition that E(ε⋆3

t ) = 1 is often added. Liu (1988) considers
model (4) with k = 1 and shows that, with the extra condition, the first three moments
of the bootstrap distribution of an HCCME-based statistic are in accord with those of the
true distribution of the statistic up to order n−1. Mammen (1993) suggests what is proba-
bly the most popular choice for the distribution of the ε⋆

t , namely the following two-point
distribution:

F1 : ε⋆
t =

{
−(

√
5 − 1)/2 with probability p = (

√
5 + 1)/(2

√
5)

(
√

5 + 1)/2 with probability 1 − p.
(11)

Recently, Davidson and Flachaire (2001) have shown that the Rademacher distribution

F2 : ε⋆
t =

{
1 with probability 0.5

−1 with probability 0.5
(12)
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always gives better results than the version usually recommended in the literature F1, and
gives exact results for some specific cases. They show that the rate of convergence of the
error in the rejection probabilities, or ERP, is at most n−3/2 with symmetric errors and n−1/2

with asymmetric errors. Rather than limiting the analysis to a comparison of the order of
the leading term in the expansion, they consider the Edgeworth expansion in its entirety
through order n−1 in order to understand finite sample behavior better. They show that the
full Edgeworth expansion of the wild bootstrap with F2 is smaller than that with F1 if the
sample size is small enough, and also when high leverage observations are present. Their
simulation results along with those of Godfrey and Orme (2001) indicate that this version is
better than others and should be preferred in practice.

Wild bootstrap vs. Pairs bootstrap

In the light of the bootstrap principle, we can compare the wild bootstrap and the pairs
bootstrap in regression models.

Since regressors are draw in the pairs bootstrap resampling scheme, the regressors in the
pairs bootstrap DGP are not exogenous and since we draw regressors and residuals in the
same time, once X⋆

t is known so is u⋆
t , so E(u⋆

t |X⋆
t ) 6= 0 (for instance, E(u⋆

t |X⋆
t = Xi) =∑n

t=1 ût P (ût|X⋆
t = Xi) = ûi). In the true DGP, if regressors X are assumed to be exogenous

and E(ut|Xt) = 0, then we can see that these two basic hypothesis are not respected in the
pairs bootstrap DGP. The bootstrap principle suggests getting a bootstrap DGP as close
as possible to the true DGP. In our case, we could improve the performance of the pairs
bootstrap with the following modifications:

1. E(u⋆
t |X⋆

t ) = 0 is respected if we draw (X⋆, u⋆) in (X, û) and if we consider the
following bootstrap DGP: y⋆

t = X⋆
t β̂ + u⋆

t ε
⋆
t , where ε⋆

t are mutually independent drawings
from some auxiliary distribution such that E(ε⋆

t ) = 0 and E(ε⋆2
t ) = 1.

2. X⋆ is exogenous if we do not resample regressors. Note that we cannot resample
residuals independently of regressors because heteroskedasticity could be a function of re-
gressors. This leads us to consider the following bootstrap DGP: y⋆

t = Xtβ̂ + ûtε
⋆
t . This last

DGP is the wild bootstrap DGP.

Thus, by imposing the two hypotheses to the pairs bootstrap DGP to get a DGP closer to
the true DGP, we are led to consider the wild bootstrap DGP. We would anticipate that
bootstrap tests based on the wild bootstrap would give a better numerical performance than
those based on the pairs bootstrap. This is borne out by simulation results in the following
sections.

3 Model design

In the experiments, I consider the linear regression model

yt = β0 + β1x1t + β2x2t + σtεt, (13)
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where both regressors are drawn from the standard lognormal distribution and the true
parameters are β0 = β1 = β2 = 0. For heteroskedastic data σ2

t = x2
t1, and εt is white noise

following N(0, 1). The sample size is n = 100, the number of Monte-Carlo simulations is
equal to N = 10,000, and the number of bootstrap replications is equal to B = 499. We test
the null hypothesis H0 : β1 = 0 with a t statistic based on the HCCME,

τ̃ = x⊤

1 M2y/(x⊤

1 M2Ω̃M2x1)
1/2, (14)

where Ω̃ is an n× n diagonal matrix with diagonal elements (atũt)
2, a transformation of the

tth restricted residual ũt from the restricted regression

yt = β0 + β2x2t + σtεt, (15)

and M2 = I − X2(X2
⊤X2)

−1X2
⊤ is the orthogonal projection matrix on to the orthogonal

complement of the span of the columns of X2 = [ι x2] where ι is a vector unity. An estima-
tor used more frequently in practice replace Ω̃ with Ω̂, having diagonal elements (atût)

2, a
transformation of the tth unrestricted residual ût from the regression (13). Note that sim-
ulation results do not depend on the choices of β0, β2, and on the scales of regressors and
σ2

t , because (14) does not depend on those parameters. The model design is chosen to make
heteroskedasticity robust tests difficult: heteroskedasticity is made a function of the regres-
sors and, because of the lognormal distribution, a few extreme observations are often present
among the regressors.

The wild bootstrap DGP is

y⋆
t = ũt(1 − ht)

−1/2 ε⋆
t . (16)

Note that, since the distribution of the τ statistic we consider is independent of the parame-
ters β0 and β2 of the regression (M2x2 = M2ι = 0), we may set β0 = β2 = 0 in the bootstrap
DGP without loss of generality. In our simulations, we consider four different cases : F1 or
F2 is the distribution of ε⋆

t in the bootstrap DGP and the statistic is computed with the
restricted τ̃ or with the unrestricted residuals τ̂ .

The pairs bootstrap DGP proposed in Freedman (1981) consists in resampling directly
in (y, x1, x2). In this case, the bootstrap statistic tests the modified null hypothesis β1 =
β̂1. The version proposed in Flachaire (1999) consists in generating the bootstrap sample
(y⋆, x⋆

1, x
⋆
2) by resampling (x⋆

1t, x
⋆
2t, u

⋆
t ) in the matrix with elements (x1t, x2t, atût), where

at = (1 − ht)
−1/2 and ût is the OLS unrestricted residual, and generating y⋆

t with the DGP

y⋆
t = β̃0 + β̃2x

⋆
2t + u⋆

t . (17)

In that case, the bootstrap statistic tests the null hypothesis β1 = 0. In the simulations, we
consider four cases: the pairs bootstrap that respects the null hypothesis H0 or the pairs
bootstrap that respects the alternative H1 and statistics computed with the restricted τ̃ or
with the unrestricted residuals τ̂ .

4 Experimental results

In this section, I study the finite-sample behavior of asymptotic and bootstrap tests robust
to heteroskedasticity of unknown form. To be useful, a test must be able to discriminate
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between the null hypothesis and the alternative. In the one hand, a test is reliable if it rejects
the null at the nominal level α, when the null hypothesis is true. Otherwise, significant ERP
should be exhibited. In the other hand, a test is powerful if it rejects strongly the null, when
the null hypothesis it is not true.

• ERP results of the experiments are shown using the graphical P value discrepancy
plots, as described in Davidson and MacKinnon (1998). These figures show, as a function of
the nominal level α, the difference between the true rejection probability and the nominal
level, that is to say the error in the rejection probability, or ERP. This is also called size
distortion.

• Power results of the experiments are shown using Power functions. It is not desirable
to plot power against nominal level to compare the power of alternative test statistics if all
the tests exhibit significant ERP. Then, power functions plot power against true level, as
defined in the Size-Power curves proposed in Davidson and MacKinnon (1998). This is often
called “level-adjusted” power. Note that the simulation results are not sensitive to the choice
of β0 and β2 in the DGP under the alternative, because the statistic (14) does not depend
on those parameters. Thus, DGPs under the alternative are defined with different values of
β1 and it is not necessary to define a drifting DGP as in Davidson and MacKinnon (2002).

I investigate finite-sample performance of asymptotic and bootstrap HCCME-based test
statistics, computed both with the restricted and unrestricted residuals, for the following
cases,

asymp : asymptotic test.
wboot1 : wild bootstrap with F1, Mammen (1993).
wboot2 : wild bootstrap with F2, Davidson and Flachaire (2001).
pboot1 : pairs bootstrap under H1, Freedman (1981).
pboot0 : pairs bootstrap under H0, Flachaire (1999).

4.1 Which transformation of residuals: HC0, HC1, HC2 or HC3?

MacKinnon and White (1985), Chesher and Jewitt (1987) and Long and Ervin (2000) show
that the error of the rejection probability of an asymptotic test based on HC0 is larger than
HC1, which is in turn larger than those of HC2 and HC3. The last two cannot be ranked
in general, although HC3 has been shown in a number of Monte Carlo experiments to be
superior in typical cases. The Davidson and Flachaire (2001) experimental results show that
the HC3 version of the HCCME is better than the other three, and the best transformation at

in the definition of the wild bootstrap DGP should be the same as that used for the HCCME.
Similarly, the Flachaire (1999) experiments results show that the transformation HC3 should
be preferred to HC0 with the pairs bootstrap. All this leads us for our simulations to use
the HC3 transformation in the bootstrap DGPs and to compute the HC3 version of the
HCCME.
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4.2 Restricted or unrestricted residuals?

There has been some discussion in the literature on the use of restricted residuals rather
than unrestricted residuals. Restricted residuals denotes the OLS estimates subject to the
restriction that is being tested. On the one hand, if the null hypothesis is true, we can
argue that the use of restricted residuals should improve the reliability of the tests. The
Davidson and MacKinnon (1985) results suggest that asymptotic tests based on restricted
residuals are more reliable - they slightly under-reject the null - while asymptotic tests
based on unrestricted residuals largely over-reject the null hypothesis when true. Thus,
they recommend the use of restricted residuals to compute the HCCME based test. On the
other hand, van Giersbergen and Kiviet (2002) argue that if the null is not true, the use
of unrestricted residuals could improve the power and should be preferred. However, this
last argument is not supported in simulation experiments, see MacKinnon (2002). For the
bootstrap test, simulation results in Davidson and Flachaire (2001) show that it is not very
important whether one uses restricted or unrestricted residuals, but that it is a mistake to
mix unrestricted residuals in the HCCME and restricted residuals for the bootstrap DGP.
However, additional experiments in Godfrey and Orme (2001) show that it is not possible to
have a good control of ERP by the use of the wild bootstrap if HCCME is computed with
unrestricted residuals. There are a few results in favor of the use of restricted residuals, but
they are not very strong. We conduct some experiments to study this problem in our model
design.

Figure 1, on the left, shows error in the rejection probability, or ERP, of asymptotic
(asymp) and bootstrap (wboot2) tests based on the HCCME computed with both restricted
and unrestricted residuals as a function of the nominal level α. This P value discrepancy
plot shows significant ERP for all tests, except for the bootstrap test based on restricted
residuals and on the wild bootstrap with F2 (wboot2,ũ). In practice, we are concerned with
a small nominal level of α = 0.01 or α = 0.05. If we restrict our attention to small nominal
levels, we can see that asymptotic tests based on restricted residuals (asymp,ũ) slightly
under-reject the null (ERP slightly negative) and asymptotic tests based on unrestricted
residuals (asymp,û) over-reject the null. These results are similar to those of Davidson and
MacKinnon (1985). It is interesting to examine all nominal levels: even if at small nominal
levels, ERPs of (asymp,ũ) are smaller than those of (asymp,û), it is not true for larger
nominal levels. In other words, the asymptotic distributions of these two tests are not good
approximations to the true distributions of the test statistic. Even if the use of restricted
residuals gives slightly better results in some cases, it is not always true. We can also see
from this figure results similar to Godfrey and Orme (2001) about bootstrap tests: we do
not have a good control over ERP when we use unrestricted residuals (wboot2,û) and we
have a very good control over it when we use restricted residuals (wboot2,ũ).

Figure 1, on the right, shows the power of the asymptotic (asymp) and bootstrap (wboot2)
tests based on HCCME computed with both restricted and unrestricted residuals, at a rejec-
tion probability level RP = 0.05, against different DGPs under the alternative hypothesis
β1. Under the alternative, a DGP is defined with β0 = β2 = 0 and β1 = −4,−3.9, . . . , 3.9, 4.
The power increases as β1 goes away from 0, and if β1 = 0 the power is equal to the rejection
probability level 0.05. Then, the most powerful test would reject the null when β1 6= 0 and
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Figure 1: ERP and Power of t-test based on restricted or unrestricted residuals

would take the form ⊤ in our figure. We see that the asymptotic and bootstrap tests based
on restricted residuals have similar power, but this is not true for those based on unrestricted
residuals. This result is anticipated by the theoretical results in Davidson and MacKinnon
(2002), where it is shown that the difference between the powers of the asymptotic and boot-
strap tests should be of the same magnitude as the difference between their ERPs. We also
see an additional interesting result: tests based on restricted residuals exhibit more power
than those based on unrestricted residuals.

Finally, these results suggest that the use of restricted residuals is highly to be recom-
mended in practice: ERPs of HCCME based tests can be controlled by the use of the wild
bootstrap and the tests are more powerful. In the following experiments, we make use of
restricted residuals.

4.3 Wild bootstrap vs. Pairs bootstrap: base case.

MacKinnon (2002) investigates the performance of the pairs and wild bootstraps using a
bootstrap DGP with restricted residuals and a HCCME based t test with unrestricted resid-
uals. We have seen above the importance of using HCCME based t test with restricted rather
than unrestricted residuals. In particular, some of our experiments, along with Godfrey and
Orme (2001), show that the wild bootstrap does not perform similarly if we use unrestricted
residuals. Consequently, it is of interest to investigate the performance of the wild and pairs
bootstrap for HCCME based tests computed with restricted residuals, when comparing these
two distinct bootstrap methods.
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Figure 2: ERP and Power of t-test, wild vs. pairs bootstrap: base case

Figure 2, on the left, shows the ERP of asymptotic and bootstrap HCCME based tests
computed with restricted residuals. From this figure it is clear that only the wild bootstrap F2

version of the t test (wboot2) performs well and avoids significant ERP at all nominal levels.
If we restrict our attention to the nominal level α = 0.05, the pairs bootstrap proposed
by Freedman (1981) (pboot1) appears to perform well: its ERP is not far away from 0.
However, if we consider all nominal levels, its behavior is not good and is quite similar to
that of the asymptotic test. Once again, we see the importance of considering more than
one nominal level: we can conclude that wboot2 performs well, not pboot1 and the other
tests. Moreover, except for the test based on the wild bootstrap proposed in Davidson and
Flachaire (2001), it is not possible to conclude from this figure that the other bootstrap
schemes (wboot1, pboot1 and pboot2) give better results than the asymptotic test (asymp).

Figure 2, on the right, shows the Power of asymptotic and bootstrap HCCME based
tests computed with restricted residuals at a rejection probability level RP = 0.05. We see
that the wild bootstrap tests (wboot1 and wboot2) and the asymptotic tests (asymp) have
similar power. This is an additional interesting result: the pairs bootstrap computed under
the null (pboot2) displays a slight loss of power and the pairs bootstrap computed under
the alternative (pboot1), as proposed by Freedman (1981), displays a large loss of power.

4.4 High leverage observations

Chesher and Jewitt (1987) shows that the HCCME finite sample performance is related to
high leverage observations in the data, that is, unbalanced regressors. Our model design
is chosen to include high leverage observations: regressors are drawn from the lognormal
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distribution so a few observations are often quite extreme. To reduce the level of high
leverage observations, I conduct a first experiment increasing the sample size and a second
experiment with regressors drawn from the Normal distribution. Table 1 shows the ERP of
the asymptotic and bootstrap tests, as in the base case, with different sample size, at the
nominal level α = 0.05. We see that the convergence to zero of the ERP of the asymptotic
test is very slow and only the ERP of the bootstrap test wboot2 is always close to zero.

Table 1: ERPs of t-test with different sample size n, α = 0.05.

n asymp wboot1 wboot2 pboot1 pboot2

50 -0.024 -0.024 0.002 0.001 -0.030
100 -0.027 -0.031 0.002 -0.007 -0.032
200 -0.022 -0.029 -0.001 -0.011 -0.032
300 -0.048 -0.040 -0.005 -0.048 -0.050
400 -0.046 -0.038 -0.002 -0.043 -0.050
500 -0.047 -0.038 -0.001 -0.042 -0.049
1000 -0.045 -0.036 -0.001 -0.032 -0.045

Figure 3 shows the ERP of the asymptotic and bootstrap tests, as in the base case, except
that the regressors are drawn from the standard Normal distribution N(0, 1) and the sample
size is reduced to n = 50. The conclusions are similar to the base case (figure 2, left); that is,
wboot2 performs very well. However, all ERPs are largely reduced. In addition, the ERP of
the asymptotic test with Normal regressors and n = 100, 200, 300, 400, 500 are respectively

ERP = −0.010, −0.013, −0.004, −0.001, −0.001, (18)

at nominal level α = 0.05. It is interesting to see that the HCCME based tests perform better
with a small sample and well balanced regressors when compared to a large sample and
unbalanced regressors. These results highlight the fact that the finite sample performance
of the HCCME based tests is more sensitive to the structure of the regressors than to the
sample size.

4.5 Asymmetric error term

Davidson and Flachaire (2001) shows that the rate of convergence of the ERP is at most
n−3/2 if we use the wild bootstrap with F2 (wboot2) and if the error terms are symmetric. In
comparison, the rate of convergence of the ERP is at most n−1 if we use the wild bootstrap
with F1 (wboot1) and if the error terms are symmetric. Then, under the assumption of
symmetry, we can expect that wboot2 will outperform wboot1. In addition, Davidson and
Flachaire (2001) shows that, under the assumption of asymmetric error terms, the ERP
is at most of order n−1/2 with wboot2 and of order n−1 with wboot1. However, based on
formal Edgeworth expansions, they show that wboot1 does not outperform wboot2 if the
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Figure 3: No high leverage, n = 50
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Figure 4: Asymmetric errors, χ2(5)

sample size is small and if there are high leverage observations: it corresponds to cases
where heteroskedasticity gives serious problems. Their simulation results, along with those
in Godfrey and Orme (2001), suggest that even if errors are not symmetric, wboot2 should
be preferred in practice. I check this last result with one additional experiment. Figure 4
shows the ERP of the asymptotic and bootstrap tests, as in the base case, except that errors
are drawn from a Chi-square distribution χ2(5). From this figure, we see that wboot1 and
wboot2 perform well.

4.6 F-test

Here we are interested in a null hypothesis with more than one restriction. We test the
null that all coefficients except the slope are equal to zero, β1 = β2 = 0, with an F -test.
Figure 5 shows the ERP of the asymptotic and bootstrap tests, as in the base case, except
that we use a F -test statistic. Once more, only the test based on the wild bootstrap with
F2 (wboot2) performs well. The other tests exhibit significant ERPs with larger magnitudes
(see the y-axis scale) than if we had used a t-test (figure 2, left).

4.7 Homoskedastic error term

What is the penalty for using the wild and the pairs bootstraps when the errors are ho-
moskedastic and inference based on assuming the conventional t statistic is reliable ? To
answer this question, figure 6 shows the ERP of the asymptotic and bootstrap tests, as
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Figure 6: Homoskedastic errors

in the base case, except that error terms are homoskedastic σ2
t = 1. We can see that the

ERPs are largely reduced compared to the heteroskedastic base case (figure 2, left). Once
again, wboot2 performs better than the others and the penalty attached to using this wild
bootstrap version is very small.

5 Conclusion

I examine finite-sample performances of heteroskedasticity-robust tests. Simulation results
initially suggest computing heteroskedasticity-robust tests with restricted residuals rather
than unrestricted residuals to achieve a gain in power. Additional experiments show, how-
ever, that the version of the wild bootstrap proposed in Davidson and Flachaire (2001) always
gives better numerical performance than the pairs bootstrap and another version of the wild
bootstrap proposed in the literature: ERP is always very small and Power is similar to that
of the asymptotic test. Further, the results show that this version of the wild bootstrap is
the only one for which the bootstrap test outperforms the asymptotic test in all the cases, a
property that is not true for other versions of the wild and pairs bootstraps.
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